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Contents of Presentation

• An introduction – what is the role of risk and reliability in engineering?

• Refreshing you memory on probability and statistics

• (the very) Basics of modern reliability theory

• Reliability based calibration of design codes

• The JCSS approach to risk assessment of engineered facilities

• On the issues of risk acceptance – how safe is safe enough?
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Engineering Decision Making for Society?

Is what we are doing of any relevance for society?
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Engineering Decision Making for Society?

• Examples of what we help to develop

Øresund bridge - DenmarkGolden Gate Bridge - USA
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Engineering Decision Making for Society?

• Examples of what we help to develop

Big Dig Boston/USA
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Engineering Decision Making for Society?

• Examples of what we help to develop

Hoover Dam - USA
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Engineering Decision Making for Society?

• Examples of what we help to develop

Hong Kong Island - China
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Engineering Decision Making for Society?

• Helping to control risks due to Natural Hazards

Tornados and strong winds
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Engineering Decision Making for Society?

• Helping to control risks due to Natural Hazards

Earthquakes
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Engineering Decision Making for Society?

• Helping to control risks due to degradation

Corrosion Fatigue
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Engineering Decision Making for Society?

• Helping to control risks due to accidents

Fires Explosions
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Engineering Decision Making for Society?

• Helping to control risks due to malevolence

Bombs Airplane impacts
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Engineering Decision Making for Society?

• Helping to reduce consequences of “unfulfilled assumptions”

Extreme loads/deterioration
Bad Reichenhalle

Design/execution errors
Siemens Arena
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The Risk associated with a given activity RA may then be written as

the Consequences of the event CEi

The risk contribution REi
from the event Ei is defined through the product 

between  

Definition of Risk

Risk is a characteristic of an activity relating to all possible events nE
which may follow as a result of the activity 
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Decision Problems in Engineering

Uncertainties must be considered in the decision making throughout all 
phases of the life of an engineering facility

Idea & 
Concept

Planning and 
feasibility study

Investigations and 
tests

Manufacturing

Design

Execution

Operation & 
maintenance

Decommissioning

• Safety of personnel

• Safety of environment

• Economical feasibility

UncertaintiesUncertainties

Traffic volume

Loads

Resistances
(material, soil,..)

Degradation processes

Service life

Manufacturing costs

Execution costs

Decommissioning 
costs
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Sources of Risks in Engineering

Any activity carries a risk potential

It is important that this potential is
fully understood

Only when the risk potential is
fully understood can rational 
decisions be identified and 
implemented
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Overview of Probability Theory

• What are we aiming for ? 

Decision Making !

Risks

Consequences of eventsProbabilities of events

Probabilistic model

Data Model estimation

We need to be able to
quantify the probability of 
events and to update 
these based on new 
information

The probability theory provides 
the basis for the consistent
treatment of uncertainties
in decision making !
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Interpretation of Probability
States of nature of which we have interest such as:

- a bridge failing due to excessive traffic loads

- a water reservoir being over-filled

- an electricity distribution system „falling out“

- a project being delayed

are in the following denoted „events“

we are generally interested in quantifying the probability that such 
events take place within a given „time frame“
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Interpretation of Probability

• There are in principle three different interpretations of probability

- Frequentistic ∞→=  for                                 exp
exp

lim)( n
n
NAP A

- Classical
tot

A

n
nAP =)(

- Bayesian occur    will  that  belief of  degree   )( AAP =



Swiss Federal Institute of Technology

Conditional Probability and Bayes‘s Rule
as there is

we have

1
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Reverend Thomas Bayes
(1702-1764)
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Uncertainties in Engineering Problems

Different types of uncertainties influence decision making

• Inherent natural variability – aleatory uncertainty
- result of throwing dices
- variations in material properties
- variations of wind loads
- variations in rain fall

• Model uncertainty – epistemic uncertainty
- lack of knowledge (future developments)
- inadequate/imprecise models (simplistic physical modelling)

• Statistical uncertainties – epistemic uncertainty 
- sparse information/small number of data
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Uncertainties in Engineering Problems

• Consider as an example a dike structure 

- the design (height) of the dike will be determining the 
frequency of floods

- if exact models are available for the prediction of future 
water levels and our knowledge about the input parameters 
is perfect then we can calculate the frequency of floods (per 
year) - a deterministic world !

- even if the world would be deterministic – we would not 
have perfect information about it – so we might as well 
consider the world as random   
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Uncertainties in Engineering Problems

In principle the so-called 

inherent physical uncertainty (aleatory – Type I)

is the uncertainty caused by the fact that the world is random, however, 
another pragmatic viewpoint is to define this type of uncertainty as

any uncertainty which cannot be reduced by means of collection of additional 
information

the uncertainty which can be reduced is then the 

model and statistical uncertainties (epistemic – Type II) 
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Uncertainties in Engineering Problems

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
Uncertainty

Epistemic 
Uncertainty

Observed annual 
extreme water levels

Model for annual 
extremes

Regression model to
predict future extremes

Predicted future 
extreme water level

Aleatory 
Uncertainty

Epistemic 
Uncertainty
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Uncertainties in Engineering Problems

The relative contribution of aleatory and epistemic uncertainty to the 
prediction of future water levels is thus influenced directly by the applied 
models 

refining a model might reduce the epistemic uncertainty – but in general also 
changes the contribution of aleatory uncertainty

the uncertainty structure of a problem can thus be said to be scale 
dependent !
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Uncertainties in Engineering Problems

Knowledge

Time
Future

Past

Present

100%

Observation

Prediction

Knowledge

Time
Future

Past

Present

100%

Observation

Prediction

The uncertainty structure changes also as function of time – is thus time 
dependent !
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Random Variables

• Probability distribution and density functions

A random variable is denoted with capital letters : X

A realization of a random variable is denoted with small letters : x 

We distinguish between 

- continuous random variables : can take any value in a given range

- discrete random variables : can take only discrete values
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Random Variables

• Probability distribution and density functions

The probability that the outcome of a discrete 
random variable X is smaller than x is denoted 
the probability distribution function

The probability density function for a discrete
random variable is defined by

( ) ( )
i

X X i
x x

P x p x
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Random Variables

• Probability distribution and density functions

The probability that the outcome of a 
continuous random variable X is smaller 
than x is denoted the 
probability distribution function

The probability density function for a 
continuous random variable is defined by 

( ) ( )XF x P X x= <

( ) ( )X
X

F xf x
x
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Random Variables

• Moments of random variables and the expectation operator

Probability distribution and density function can be described in terms of 
their parameters    or their moments 

Often we write 

The parameters can be related to the moments and visa versa

),( pxFX ),( pxf X

Parameters

p
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Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a continuous random variable X is defined through

The expected value E[X] of a continuous random variable X is defined 
accordingly as the first moment 

∫
∞
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Random Variables

• Moments of random variables and the expectation operator

The i‘th moment mi for a discrete random variable X is defined through

The expected value E[X] of a discrete random variable X is defined 
accordingly as the first moment 

1
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n
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i j X j
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Random Variables

• Moments of random variables and the expectation operator

The standard deviation of a continuous random variable is defined as the 
second central moment i.e. for a continuous random variable X we have

for a discrete random variable we have correspondingly

[ ] [ ] ( ) ( )dxxfxXE XXXX ∫
∞

∞−
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Random Variables

• Moments of random variables and the expectation operator

The ratio between the standard deviation and the expected value of a 
random variable is called the Coefficient of Variation CoV and is defined as

a useful characteristic to indicate the variability of the random variable 
around its expected value

[ ] X

X

CoV X σ
μ

=

Dimensionless
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Random Variables

• Typical probability distribution
functions in engineering

Normal : sum of random effects

Log-Normal: product of random
effects

Exponential: waiting times

Gamma: Sum of waiting times

Beta: Flexible modeling function

Distribution type Parameters Moments
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Stochastic Processes and Extremes

• Random quantities may be “time variant” in the sense that they take new 
values at different times or at new trials.

- If the new realizations occur at discrete times and have discrete values the 
random quantity is called a random sequence

failure events, traffic congestions,…

- If the new realizations occur continuously in time and take continuous values 
the random quantity is called a random process or stochastic process

wind velocity, wave heights,…
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Stochastic Processes and Extremes
• Continuous random processes

A continuous random process is a random process which has realizations 
continuously over time and for which the realizations belong to a 
continuous sample space.

Variations of: 
water levels
wind speed
rain fall
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Stochastic Processes and Extremes

Extremes of a random process:
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Stochastic Processes and Extremes

Extreme Value Distributions

In engineering we are often interested in extreme values i.e. the
smallest or the largest value of a certain quantity within a certain
time interval e.g.:

The largest earthquake in 1 year

The highest wave in a winter season

The largest rainfall in 100 years
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Stochastic Processes and Extremes

Extreme Value Distributions

We could also be interested in the smallest or the largest value of a 
certain quantity within a certain volume or area unit e.g.:

The largest concentration of pesticides in a volume of soil

The weakest link in a chain

The smallest thickness of concrete cover
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Extreme Value Distributions

If the extremes within the period T of an ergodic random process
X(t) are independent and follow the distribution: 

Then the extremes of the same process within the period:

will follow the distribution:

)(max
, xF TX

Tn ⋅

( )max max
, ,( ) ( )

n

X nT X TF x F x=
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Extreme Value Distributions

Extreme Type I – Gumbel Max

When the upper tail of the probability density function falls off 
exponentially (exponential, Normal and Gamma distribution) then
the maximum in the time interval T is said to be Type I extreme 
distributed

)))(exp()(exp()(max
, uxuxxf TX −−−−−= ααα

)))(exp(exp()(max
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0.577216
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For increasing time 
intervals the variance 
is constant but the mean 
value increases as: 
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Extreme Value Distributions

Extreme Type II – Frechet Max

When a probability density function is downwards limited at zero
and upwards falls off in the form 

then the maximum in the time interval T is said to be Type II 
extreme distributed  

k
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Extreme Value Distributions

Extreme Type III – Weibull Min

When a probability density function is downwards limited at ε and 
the lower tail falls off towards ε in the form

then the minimum in the time interval T is said to be Type III 
extreme distributed
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Stochastic Processes and Extremes

Return period for extreme events:

The return period for extreme events TR may be defined as

If the probability of exceeding x during a reference period of 1 year
is 0.01 then the return period for exceedances is
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1
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1001100
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• Loads on Structures

Combination of loads

We are interested in the maximum
of a sum of load effects from different 
loads

Stochastic Processes and Extremes
 

t
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t
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Snow

Transient load

Imposed load

Time
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• The JCSS PMC

Part I :  Basis of design
Part II:  Load models
Part III: Resistance models
Part IV: Examples

Probabilistic Modeling of Resistances
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• The JCSS PMC – Load Models

Probabilistic Modeling of Resistances

2.00 GENERAL PRINCIPLES

2.01 SELF WEIGHT

2.02 LIVE LOAD

2.06 LOADS IN CAR PARKS

2.12 SNOW LOAD

2.13 WIND LOAD

2.15 WAVE LOAD

2.17 EARTHQUAKE

2.18 IMPACT LOAD

2.20 FIRE
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• The JCSS PMC – Resistance models

Probabilistic Modeling of Resistances

3.00 GENERAL PRINCIPLES

3.01 CONCRETE

3.02 STRUCTURAL STEEL

3.0* REINFORCING STEEL

3.04 PRESTRESSING STEEL

3.05 TIMBER

3.07 SOIL PROPERTIES

3.09 MODELUNCERTAINTIES

3.10 DIMENSIONS

3.11 EXCENTRICITIES
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Overview of Estimation and Model Building

Different types of information is used when
developing engineering models

- subjektive information
- frequentististic information

Frequentistic
- Data

Subjektive
- Physical understanding
- Experience
- Judgement

Distribution family

Distribution parameters

Probabilistic model
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Overview of Estimation and Model Building

Model building may be seen to consist of five steps

1) Assessment and statistical quantification of the available data

2) Selection of distribution function

3) Estimation of distribution parameters

4) Model verification

5) Model updating
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Structural Reliability Analysis

Reliability of structures cannot be 
assessed through failure rates because

- Structures are unique in     
nature

- Structural failures normally 
take place due to extreme 
loads exceeding the residual 
strength

Therefore in structural reliability, models 
are established for resistances R and 
loads S individually and the structural 
reliability is assessed through:

)0( ≤−= SRPPf

r
s

R

S
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Structural Reliability Analysis

If only the resistance is uncertain the 
failure probability may be assessed by

If also the load is uncertain we have

where it is assumed that the load and 
the resistance are independent 

This is called the 

„Fundamental Case“
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Structural Reliability Analysis

In the case where R and S are normal 
distributed the safety margin M is also 
normal distributed

Then the failure probability is

with the mean value of M

and standard deviation of M 

The failure probability is then

where the reliability index is

SRM −=

)0()0( ≤=≤−= MPSRPPF
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22
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Structural Reliability Analysis

The normal distributed safety margin M

)(mfM

m
Mμ

SafeFailure
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Structural Reliability Analysis

In the general case the resistance 
and the load may be defined in terms 
of functions
where X are basic random variables

and the safety margin as 

where                   is called the 

limit state function

failure occurs when
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Structural Reliability Analysis

Setting                   defines a (n-1) 
dimensional surface in the space 
spanned by the n basic variables X

This is the failure surface separating 
the sample space of X into a safe 
domain and a failure domain

The failure probability may in general 
terms be written as 

0)( =xg
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Basics of Structural Reliability Methods

The probability of failure can be assessed 
by 

where               is the joint probability 
density function for the basic random 
variables X 

For the 2-dimensional case the failure 
probability simply corresponds to the 
integral under the joint probability density 
function in the area of failure
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Basics of Structural Reliability Methods

When the limit state function is
linear

the saftey margin M is defined
through

with

mean value
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Basics of Structural Reliability Methods

The failure probability can then be 
written as 

The reliability index is defined as 

Provided that the safety margin is 
normal distributed 
the failure probability is 
determined as 

)0()0)(( ≤=≤= MPgPPF X

M
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σ
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m
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Basler and Cornell
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Basics of Structural Reliability Methods

The reliability index β has the geometrical 
interpretation of being the shortest distance 
between the failure surface and the origin in
standard normal distributed space
u

in which case the components of U have zero 
means and variances equal to 1
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Basics of Structural Reliability Methods
Example:

Consider a steel rod with resistance r
subjected to a tension force s

r and s are modeled by the random 
variables R and S

The probability of failure is wanted

35,350 == RR σμ
40,200 == SS σμ

SRg −=)(X

)0( ≤− SRP
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Basics of Structural Reliability Methods
Example:

Consider a steel rod with resistance r
subjected to a tension force s

r and s are modeled by the random 
variables R and S

The probability of failure is wanted

The safety margin is given as 

The reliability index is then

and the probability of failure

35,350 == RR σμ
40,200 == SS σμ

SRg −=)(X

)0( ≤− SRP

SRM −=
150200350 =−=Mμ

15.534035 22 =+=Mσ

84.2
15.53

150
==β

3104.2)84.2( −⋅=−Φ=FP
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Basics of Structural Reliability Methods

Usually the limit state function is 
non-linear
- this small phenomenon caused   
the so-called invariance problem 

Hasofer & Lind suggested to linearize
the limit state function in the design 
point
- this solved the invariance 
problem

The reliability index may then be 
determined by the following 
optimization problem

Can however easily be linearized !

-6

-4

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

S

R

u2

u1β

0)( =′ ug

0)( =ug
-6

-4

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

S

R

u2

u1

-6

-4

-2

0

2

4

6

8

10

12

-2 0 2 4 6 8 10 12

S

R

u2

u1ββ

0)( =′ ug

0)( =ug

{ }
∑
==∈

=
n

i
i

g
u

1

2

0)(
min

uu
β



Swiss Federal Institute of Technology

Basics of Structural Reliability Methods

Simulation methods may also be 
used to solve the integration 
problem

1) m realizations of the vector X are    
generated

2) for each realization the value of 
the limit state function is 
evaluated

3) the realizations where the limit 
state function is zero or negative 
are counted

4) The failure probability is 
estimated as

{ }
∫
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Basics of Structural Reliability Methods

• Estimation of failure probabilities using
Monte Carlo Simulation
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• m random outcomes of R und S 
are generated and the number of  
outcomes nf in the failure domain
are recorded and summed

• The failure probability pf
is then
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Structural reliability and safety formats
• The Load and Resistance Factor Design safety format is built up by the 

following components 

Design situations Ultimate, serviceability, accidental 

Design equations

Design variables

Characteristic values

Partial safety factors

Design values

( ) 0/ =+−= CQcGmc QGRg
a

γγγz

CG CQ

z

mγ Gγ Qγ

d

c
m x

x
=γ

c

d
Q x

x
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Basics of Structural Reliability Methods
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Code calibration as a decision problem
• The code calibration problem can be seen as a decision problem with the objective 

to maximize the life-cycle benefit obtained from  the structures by „calibrating“
(adjusting) the partial safety factors
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• The „optimal“ design is determined from the design equations
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Target reliabilities for the design of structures

• Target reliabilities for Ultimate Limit State verification

Relative cost of 
safety measure 

Minor  consequences  
of failure 

Moderate consequences 
of failure 

Large consequences 
of failure 

High β=3.1 ( FP ≈10-3) β=3.3 ( FP ≈5 10-4) β=3.7 ( FP ≈10-4) 
Normal β=3.7 ( FP ≈10-4) β=4.2 ( FP ≈10-5) β=4.4 ( FP ≈5 10-5) 
Low β=4.2 ( FP ≈10-5) β=4.4 ( FP ≈10-5) β=4.7 ( FP ≈10-6) 
 

• Target reliabilities for Serviceability Limit State Verification

Relative cost of 
safety measure 

Target index  
(irreversible SLS) 

High β=1.3 ( FP ≈10-1) 
Normal β=1.7 ( FP ≈5 10-2) 
Low β=2.3 ( FP ≈10-2) 
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The JCSS approach to code calibration

• A seven step approach
1. Definition of the scope of the code

- Class of structures and type of failure modes

2. Definition of the code objective
- Achieve target reliability/probability

3. Definition of code format
- how many partial safety factors and load combination factors to be used
- should load partial safety factors be material independent
- should material partial safety factors be load type independent
- how to use the partial safety factors in the design equations 
- rules for load combinations 
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The JCSS approach to code calibration

• A seven step approach
4. Identification of typical failure modes and of stochastic model

- relevant failure modes are identified and formulated as limit state    functions/design 
equations
- appropriate probabilistic models are formulated for uncertain variables

5. Definition of a measure of closeness
- the objective function for the calibration procedure is formulated e.g. 
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The JCSS approach to code calibration

• A seven step approach
6. Determination of the optimal partial safety factors for the chosen code format

7. Verification
- incorporating experience of previous codes and practical aspects

The JCSS software CODECAL provides code
calibration according to this approach

available on: www.jcss.ethz.ch
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• Decisions and decision maker

A decision is: 

a committed allocation of resources

the decision maker thus has responsibility for the 
committed resources – but also responsibility to any third 
party which may be affected by the decision

the benefit of the decision should at least be in balance with 
the committed resources – this depends on the preferences 
of the decision maker – measured in terms of attributes

The JCSS Framework for Risk Assessment 
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• Constraints on decision making

In principle – any society may define what they consider to 
be acceptable decisions

Typically decisions are constrained – e.g. in terms of 
maximum acceptable risks to 

- persons
- qualities of the environment

The JCSS Framework for Risk Assessment 
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• Feasibility and optimality

Feasible, optimal and acceptable decisions may be 
identified from 

The JCSS Framework for Risk Assessment 

 

Feasible decisions

Optimal decision

Utility

Decision alternative

Acceptable decisions
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• System modelling

The JCSS Framework for Risk Assessment 

Facility

Facility boundary
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• Knowledge and uncertainty

Remember that all uncertainties must be considered when 
the expected value of the utility is assessed

- aleatory

- epistemic

It is important to address the possibility of the existence 
different system hypothesis – and take this into account in 
the decision problem

The JCSS Framework for Risk Assessment 
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• System representation – scenarios of events

The JCSS Framework for Risk Assessment 

 

……….

Exposure
events

Constituent 
failure events
and direct 
consequences

Follow-up
consequences

System representation must 
be refined enough to enable
a comparison of the risks
or benefits of different 
decision alternatives
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• System representation – evolution of consequences

The JCSS Framework for Risk Assessment 
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• Risk perception

The JCSS Framework for Risk Assessment 

Due to perception of 
possible events
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• Comparison of decision alternatives

Optimal decision alternatives are selected by comparing 
expected total utility 

The JCSS Framework for Risk Assessment 

1 1 1
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• System representation – multiple scales

The JCSS Framework for Risk Assessment 
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• Assessment of risks

Direct risks: 

Indirect risks:

Robustness Index:

The JCSS Framework for Risk Assessment 
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• Indicators of risks

The JCSS Framework for Risk Assessment 

   :

Flood
Ship impact
Explosion/Fire
Earthquake 
Vehicle impact
Wind loads
Traffic loads
Deicing salt
Water
Carbon dioxide

Yielding
Rupture
Cracking
Fatigue
Wear
Spalling
Erosion
Corrosion

Loss of functionality
partial collapse
full collapse

Use/functionality
Location
Environment
Design life
Societal importance

Design codes
Design target reliability
Age
Materials
Quality of workmanship
Condition
Protective measures

Ductility
Joint characteristics
Redundancy
Segmentation
Condition control/monitoring
Emergency preparedness

Direct consequences
Repair costs
Temporary loss or reduced 
functionality
Small number of injuries/fatalities
Minor socio-economic losses
Minor damages to environment

Indirect consequences
Repair costs
Temporary loss or reduced 
functionality
Mid to large number of 
injuries/fatalities
Moderate to major socio-economic 
losses
Moderate to major damages to 
environment

Exposure

Vulnerability

Robustness

Exposure

Vulnerability

Robustness

Exposure

Vulnerability

Robustness

Exposure

Vulnerability

Robustness

Physical characteristicsScenario representation Indicators Potential 
consequences
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• Discounting

In evaluating the benefit and risk – the time of 
consequences as well as investments must be taken into 
account – by discounting

- private discounting should consider long term investment 
return

- public sector should consider only long term rate of 
economical growth – presently around 2 percent per 
annum

The JCSS Framework for Risk Assessment 
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• Risk treatment – communication and transfer

- In principle risk may be treated at any level in the systems 
representation

The JCSS Framework for Risk Assessment 
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Collecting more information

Changing the physical characteristics

Risk information/communication

Transfer of risks - insurance
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• Basically the same steps
should be performed for any 
type of facility/application area

Risk assessment procedures are 
generic

The Procedure of Risk Assessment  Define Context
and Criteria

Define System

Identify Hazard
Scenarios

- what might go wrong
- how can it happen
-how to control it

Analysis of
Consequences

Analysis of
Probability

Identify Risk
Scenarios

Analyse
Sensitivities

Assess Risks

Risk
Treatment

Monitor and
Review
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Life Safety – and the Performance of Society

• Life safety is provided by many different 
sectors and through very different activities

Efficiency is markedly different from 
sector to sector and from activity
to activity !

It is a societal responsibility to spend 
public resources efficiently !

If this is not done – life is taken away 
from some individuals in society  



Swiss Federal Institute of Technology

Life Safety – and the Performance of Society

• Prioritization in society must be subject to a holistic perspective
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Life Safety – and the Performance of Society

• The performance of the nations of the world is measured through the Human 
Development Index (HDI)

 

World map indicating Human Development Index (2004). 
██ 0.950 and over  
██ 0.900-0.949  
██ 0.850-0.899  
██ 0.800-0.849  
██ 0.750-0.799 

██ 0.700-0.749  
██ 0.650-0.699  
██ 0.600-0.649  
██ 0.550-0.599  
██ 0.500-0.549 

██ 0.450-0.499  
██ 0.400-0.449  
██ 0.350-0.399  
██ 0.300-0.349  
██ under 0.300  
██ n/a  

 

 1 1 1 
3 3 3

HDI GDP Index EI LEI= + +
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Life Safety – and the Performance of Society

• It is also interesting to observe how the income of nations is distributed
between the individuals of the nations (Gini – Index)

 1 1 1 
3 3 3

HDI GDP Index EI LEI= + +
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Modelling Socio-Economical Acceptable Risks

• Taking basis in the philosophical insight that the basic asset individuals have 
is time – Nathwani, Pandey and Lind developed the Life Quality Index – a 
preference model – which at a societal level acts as a revealed preference on 
how we weight money against life time and time for private activities 

( , )
  : is the part of the GDP available for investment into 

       life safety
   : is the life expectancy at birth
  : is the part of life spent for work

1  
1

   : is a factor which takes

qL g g
g

w
wq

wβ
β

=

=
−

l l

l

 into account that only a 
        part of the GDP is based on humal labour
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Modelling Socio-Economical Acceptable Risks

• Based on the LQI – the consideration that every investment into life safety
should lead to an increase in life-expectancy results in a risk acceptance
criterion:

which leads to the important Societal Willingness To Pay (SWTP) criterion:

1 0+ ≥
l

l

dg d
g q

= = −
l

l

g dSWTP dg
q

GDP 59451 SFr 

l  80.4 years 

w  0.112 

β  0.722 

g  35931 SFr 

q  0.175 
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Modelling Socio-Economical Acceptable Risks

• The SWTP criterion is readily applied for the purpose to determining
acceptable structural failure probabilities

where 
  is a demographical constant

    is the probability of dying in case of structural failure
   is the failure rate of a considered structural system

x x

x

d C d C kdm

C
k
m

μ≈ =
l

l
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Modelling Socio-Economical Acceptable Risks

( ) ( )

where 
( )  are the annual costs spent for risk reduction

     is the number of people exposed to the structural failure
         is a decision alternative e.g. a structural di

y x PE

y

PE

gdC p C N kdm p
q

dC p

N
p

≥ −

mension

• The SWTP criterion is readily applied for the purpose to determining acceptable
structural failure probabilities
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Modelling Socio-Economical Acceptable Risks

• The SWTP criterion can be visualized

 

( )m p

p

dp

maximum acceptable 
failure rate

acceptable decisions

( )y
x PE

qdC p
C N k g

( )y

x PE

C p q
C N k g ( ) ( )y x PE

gdC p C N kdm p
q

≥ −



Swiss Federal Institute of Technology

Modelling Socio-Economical Acceptable Risks

• Based on the LQI – also the costs of compensation for a lost life can be
assessed – Societal Value of a Statistical Life (SVSL).

For Switzerland this amounts to about 6 million SFr

=
gSVSL E
q
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Modelling Socio-Economical Acceptable Risks

• Now the optimization problem can be reassessed –

Acceptable decisions are limited by the SWTP criterion

Costs of failure include compensation – through the SVSL

 

Feasible decisions

Optimal decision

Utility

Decision alternative

Acceptable decisions
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Reliability Assessment of Structures

Thanks for your attention !

COST E55 Workshop
Graz University of Technology
May, 14-15, 2007
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